В роботі розроблено автоматизовану інформаційно-пошукову систему маніпулятора промислового робота.

В роботі розроблена автоматизована інформаційно-пошукова система маніпулятора промислового робота.

In this paper we developed an automated information retrieval system of the manipulator of an industrial robot.

Ключові слова: система, пошук, роботи, маніпулятори, інформація

Вступ
При самому загальному підході автоматизовану інформаційно-пошукову систему (АІПС) можна визначити як сукупність організаційних і технічних засобів для збереження та обробки інформації з метою забезпечення інформаційних потреб користувачів (абонентів). Таке визначення може бути задовільним тільки при самій узагальненій і неформальній точці зору і підлягає подальшому уточненню. АІПС знаходять (в тому чи іншому вигляді) досить широке застосування в життєдіяльності людини. Це пов’язано з тим, що необхідно проводити обмін інформацією – передача знань, як між окремими членами і колективами суспільства, так і між різними поколіннями [1].

На сучасному підприємстві в тому чи іншому вигляді повинна існувати інформаційна система. Для обробки даних потрібні певні організаційні і технічні засоби, тобто АІПС.

На рисунку 1 наведено стандартний вид промислового робота.

Рис. 1. Зварювальний робот ОТС АП-В6
Розроблена інформаційно-пошукова система маніпулятора промислового робота, база даних якої містить інформацію про параметри і характеристики промислових робіт, що спрошує вибір і пошук потрібних маніпуляторів, а за допомогою баз даних зменшується час пошуку і визначення головних технічних параметрів. Також в базі даних можна додавати нову і видалювати неактуальну інформацію, проводити пошук за заданім спроектованими запитами і проводити програмний розрахунок вантажопідіймності маніпулятора, тому це роботи являються актуальною.

Мета роботи – розробка автоматизованої інформаційно-пошукової системи маніпулятора промислового робота.

Очікуваний результат роботи – програмний продукт пошуку і розрахунку маніпулятора промислового робота.

Для досягнення поставлених мети необхідно вирішити наступні задачі:
- проаналізувати предметну область;
- провести огляд класифікації промислових робіт;
- проаналізувати схеми маніпуляторів промислових роботів;
- провести підбір маніпуляторів роботі за технічними характеристиками;
- розробити бази даних і алгоритм пошуку інформаційно-пошукової системи;
- розробити інтерфейс автоматизованої інформаційно-пошукової системи.

Аналіз структури маніпулятора промислового робота
Маніпулятор промислового робота (ПР) призначений для виконання рухових функцій при переміщення об’єктів в просторі і є багатоскладним механізмом з розрізнянням кінематичним ланцюгом.

Конструктивно маніпулятор складається з:
а) несучих конструкцій;
b) виконавчих механізмів;
в) захватного пристрою;
г) приводу з передавальними механізмами;
d) пристрою пересування.

Пристрій управління ПР необхідно для формування і видачі керуючих впливів маніпулятору відповідно до керуючої програми і конструктивно складається з власне системи управління, інформаційно-вимірювальної системи з пристроями зворотного зв’язку і системи зв’язку [2, 3].

Несучі конструкції служать для розміщення всіх пристроїв і агрегатів промислового робота, а також для забезпечення необхідної міцності і жорсткості маніпулятора. Несучі конструкції виконують у вигляді підстав, корпусів, стійок, рам, візків, портальів.

Виконавчий механізм – це сукупність рухливо сполучених ланок маніпулятора, призначених для впливу на об’єкт маніпулювання або оброблювану середу.

Захватний пристрій – кінцевий вузол маніпулятора,
Технологія приборостворення 1’ 2016

що забезпечує захист і утримання в певному положенні об’єкта маніпулювання.

Розробка структури бази даних

Важливим аспектом є внутрішня схема бази даних (БД), яку організовує і підтримує СУБД. Одиничним елементом внутрішньої схеми баз даних АПС є фізичний запис, в більшості випадків співпадаючий по сенсу з логічним записом, тобто в реляційних СУБД з табличним рядом.

Внутрішня схема бази даних зазвичай приймала від користувачів інформаційної системи, за винятком можливості встановлення і використання індексації полів.

Разом з тим, особливості фізичної структури файлів даних і індексних масивів, принципи організації і використання дискового простору і внутрішньої пам’яті, що реалізуються конкретною СУБД, повинні враховуватися проектувальниками банків даних, оскільки ці «прозорі» для користувачів-абонентів особливості СУБД критично впливають на ефективність обробки даних в інформаційній системі. У загальному плані можна виділити наступні функції СУБД, що реалізуються: організація і підтримка логічної структури даних (схеми бази даних); організація і підтримка фізичної структури даних в зовнішній пам’яті; організація доступу до даних і їх обробка в оперативній і зовнішній пам’яті [4].

Опрацювавши теоретичний матеріал і ознайомившись з деталями побудови БД була розроблена база даних інформаційно-пошукової системи маніпулятора промислового робота наведено на рисунку 2.

Розроблена база даних складається з 4 таблиць – name_firm; developer; model; options.

При створенні БД були використані такі типи полів:
- int – в базі даних відповідає за унікальний ідентифікатор;
- varchar – в базі даних відповідає за текстові поля.

Таблиці name_firm and table developer мають зв’язок один до багатьох, що значить в одній кількості виробників.

Зв’язок name_firm and table developer зображений на рисунку 3.

Рис. 3. Зв’язок name_firm and table developer

Таблиця model відповідає за зберігання інформації про маніпулятор, а також детальний опис для нього. У кожній моделі може бути свій виробник, відповідно у одного виробника може бути декілька моделей.

Зв’язок model and table developer зображений на рис. 4.

Рис. 4. Зв’язок model and table developer

Таблиця options відповідає за зберігання параметрів маніпуляторів зв’язуючи параметр з унікальним ідентифікатором моделі якій можна побачити на рисунку 5. У одній моделі може бути декілька опцій.

Рис. 2. База даних автоматизованої інформаційно-пошукової системи маніпулятора промислового робота

Рис. 4. Зв’язок model and table developer

Таблиця options відповідає за зберігання параметрів маніпуляторів зв’язуючи параметр з унікальним ідентифікатором моделі якій можна побачити на рисунку 5. У одній моделі може бути декілька опцій.
Розробка бази даних в phpMyAdmin
В роботі процес розробки бази даних було реалізовано в phpMyAdmin.
На рисунку 6 наведено головне вікно MySQL Workbench.

Рис. 6. Головне вікно програми

MySQL Workbench – інструмент для візуального проектування баз даних, що інтегрує проектування, моделювання, створення й експлуатацію БД в єдине безшовне оточення для системи баз даних MySQL.
База даних була реалізована у програмі phpmyadmin, головне вікно програми зображено на рисунку 7.

Рис. 7. Головне вікно програми phpmyadmin

phpMyAdmin дозволяє через браузер здійснювати адміністрування сервера MySQL, запускати запити SQL, переглядати та редагувати вміст таблиць баз даних. Ця програма користується великою популярністю у веб-розробників, оскільки дозволяє керувати СКБД MySQL без безпосереднього введення SQL команд через друкний інтерфейс і з будь-якого комп'ютера під'єднаного до інтерфейса без необхідності встановлення додаткового програмного забезпечення.

Розглянемо детальніше таблицю developer:
Таблиця містить 4 стовпці: id_dev, id_dirm, name_dev, info_dev.
а) id_dev – стовпець містить інформацію про розробника, тобто його унікальний ідентифікатор, в таблиці наведено 3 виробника – це Китай, Японія, Німеччина;
б) id_dirm – стовпець містить інформацію про фірму, тобто містить його унікальний ідентифікатор;
в) name_dev – стовпець містить назву фірми;
г) info_dev – стовпець містить інформацію про детальній опис виробника;
Запит SELECT* FROM `developer` LIMIT 0 , 30 – виводить усю інформацію з таблиці developer.
Розробка автоматизованої інформаційно-пошукової системи маніпулятора промислового робота.
На рисунку 8 зображено таблицю developer.

Рис. 8. Таблиця developer

Запит SELECT * FROM `developer` WHERE id_dev = 2 – виводить на екран усю інформацію про виробника у якого унікальний ідентифікатор дорівнює 2.
Результат запиту приведений на рисунку 9.

Рис. 9. Результат запиту

Запит SELECT * FROM `developer` WHERE id_firm =9 – виводить на екран усю інформацію про виробника у якого унікальний ідентифікатор фірми дорівнює 10.
Результат запиту приведений на рисунку 10.

Рис. 10. Результат запиту

Запит SELECT * FROM `developer` WHERE name_dev = 'Германия' –виводить на екран усю
Технологія приборобудування 1’ 2016

інформацію про виробника, де назва виробника дорівнює Китай.

Результат запиту приведений на рисунку 11.

Рис. 11. Результат запиту

Розглянемо детальніше таблицю name_firm:
Таблиця містить 3 стовпці: id_dirm; name_firm; info_firm.

а) id_dirm – стовпець містить інформацію про фірму, тобто містить його унікальний ідентифікатор;

б) name_firm – стовпець містить назву фірму, для кожного унікального ідентифікатора унікальна назва фірми;

в) info_firm – стовпець містить детальний опис кожного фірми.

Запит SELECT * FROM `name_firm` – виводить на екран всю інформацію з таблиці name_firm.

Результат запиту приведений на рисунку 12.

Рис. 12. Результат запиту

Запит SELECT * FROM `name_firm` WHERE id_dirm = 10 –виводить на екран всю інформацію про фірму у якої унікальний ідентифікатор дорівнює 10.

Результат запиту приведений на рисунку 13.

Рис. 13. Результат запиту

Запит SELECT * FROM `name_firm` WHERE name_firm = ‘KUKA’ – виводить всю інформацію про фірму назва якої KUKA.

Результат запиту приведений на рисунку 14.

Рис. 14. Результат запиту

Розглянемо детальніше таблицю model:

а) id_dev – стовпець містить інформацію про розробника, тобто його унікальний ідентифікатор;

б) id_model – стовпець містить інформацію про модель, тобто його унікальний ідентифікатор;

в) name_model – стовпець містить назву моделі, для кожного унікального ідентифікатора унікальна назва фірми;

г) info_model – стовпець містить детальний опис кожній моделі.

д) image – стовпець містить місце знаходження картинки маніпулятора.

Запит SELECT * FROM `model` – виводить на екран всю інформацію з таблиці model. Результат запиту приведений на рисунку 15.

Рис. 15. Результат запиту

Запит SELECT * FROM `model` WHERE id_model = 6 –виводить на екран всю інформацію про модель, унікальний ідентифікатор якої дорівнює 6. Результат запиту приведений на рисунку 16.

Рис. 16. Результат запиту

Запит SELECT * FROM `model` WHERE id_dev = 2 – виводить на екран всю інформацію про модель, де унікальний ідентифікатор моделі виробника дорівнює 2.

Результат запиту приведений на рисунку 17.

Рис. 17. Результат запиту
Запит SELECT * FROM 'model' WHERE name_model = 'Fanuc Robotics Arc Mate 0iA' – виводить всю інформацію про фірму назва якої 'Fanuc'.
Результат запиту приведений на рисунку 18.

Рис. 18. Результат запиту

Розглянемо детальніше таблицю options:
а) id_option – стовпець містить інформацію про параметр, тобто його унікальний ідентифікатор;
б) id_model – стовпець містить інформацію про модель, тобто його унікальний ідентифікатор;
в) vantage – стовпець містить інформацію про вантажопідйомність маніпулятора;
г) radius – стовпець містить інформацію про радіус робочої зони маніпулятора;
д) kol_sei – стовпець містить інформацію кількість осей маніпулятора;
е) povt – стовпець містить інформацію про повторюваність маніпулятора;
ф) temp – стовпець містить інформацію про максимальну температуру середовища роботи маніпулятора;
ж) vaga – стовпець містить інформацію вагу маніпулятора.

Запит SELECT * FROM 'options' – виводить на екран інформацію з таблиці options.
Результат запиту приведений на рисунку 19.

Рис. 19. Результат запиту

Розробка інтерфейсу автоматизованої інформаційно-пошукової системи маніпулятора промислового робота
При розробці інтерфейсу автоматизованої інформаційно-пошукової системи маніпулятора промислового робота було використано платформу для програмування Eclipse.

Технологія приборостворення 1’ 2016

Платформа Eclipse створена для побудови інтегрованих середовищ розробки (IDE). Вона може використовуватися для створення різних наскрізних обчислювальних рішень для безлічі середовищ виконання програм.
Eclipse пропонує відрізняти вихідний код платформи.
Для перевірки якості, портативності і швидкості коду опубліковані API тестуються консорціумом суміжних індустрій.
Використання Eclipse дозволяє розробникам інструментів сфокусуватися на власних основних завданнях і нових моделях для технології розробки.
Платформа Eclipse являє собою фундамент для побудови і запуску інтегрованих інструментів розробки наскрізного програмного забезпечення.
Основним з таких переваг є повторне використання продуктів.
Основна властивість Eclipse – гнучкість. З платформою Eclipse, що не завдовжки компонент, можна модифікувати за вимогою. Наприклад, якщо не властивий редактор, створити власний або додати один з популярних редактор, створений на ринку відрізняти компонентів, пропонованому платформою Eclipse.
Платформа Eclipse доступна в рамках відрізної публічної ліцензії з усіма чітко задокументованими API і точками розширення, тому вона дозволяє розробникам інструментів підтримувати будь-яку кількість робочих опцій, включаючи і продукти Microsoft.
В Eclipse все є плагінах. У Java IDE немає особливого статусу, він всього лише є іншим набором плагінів, що демонструє легко інтегрується розширюваність платформи.
Eclipse є платформою інтеграції інструментів з відрізком вихідним кодом, доступною для використання в будь-якому робочому опрощення.
Підводячи підсумки, можна зробити висновок, що Eclipse є одним з кращих рішень з усіх запропонованих програм на сьогодення день.
При відрізках програми користувача відкривається головний інтерфейс пошукової системи (рис. 20), де він може прописати відомі йому параметри промислової роботи-маніпулятора.
Програмою також передбачено підказки, що надає інтерфейс, відповідно до кожної характеристики, щоб користувач міг зменшити час пошуку потрібного йому маніпулятора.
Приклад підказки вантажопідйомність наведено на рисунку 21.
Результат пошуку за потрібними параметрами відображується у вигляді списку. Якщо користувача цікавить більш детальна інформація про найближчий маніпулятор, то користувач натискає на картинку, програма в свою чергу надає окремо інформацію про маніпулятор з його повним описом і детальними технічними характеристиками.
Рис. 20. Головне вікно програми

Рис. 21. Підказка вантажопідйомністі маніпулятора

Також програма надає можливість здійснювати пошук потрібного маніпулятора за країною виробника, пропишує у перші букви країни яка цікавить. За допомогою списку, який випадає, надаються можливі варіанти.

Результат пошуку буде відображений в тому ж форматі, як і при пошукі за технічними параметрами.

Приклад пошуку зображень наведено на рисунку 22.

Рис. 22. Пошук за країною виробника

Рис. 23. Пошук за назвою фірми

Якщо користувач не впевнений в основних характеристиках, то програма надає можливість розрахувати головний технічний параметр – вантажопідйомність.

При натисканні клаавіці Розрахунок користувач може сам розрахувати параметр з відповідними даними, всі дані для розрахунків приведені.

Отримані вантажопідйомність робота-мініпультатора користувач округлювати отримані дані прописує і в пошук за параметрами.

Приклад розрахунку вантажопідйомністі робота-мініпультатора приведені на рисунку 24.

Рис. 24. Розрахунок вантажопідйомністі робота-мініпультатора
Технологія приборобудування 1’ 2016

СПИСОК ЛІТЕРАТУРИ:

Однією з найважливіших вимог таких систем є забезпечення правильної зміни температури в часі, щоб уникнути термоударів, забезпечити хорошу активацію флюсу і змочування поверхні припосм. При цьому технологія нагрівання процесу паяння, а саме створення температурної карти (термопрофілю), не завжди містить заходи щодо поліпшення паяння через відсутність необхідних для цього засобів і методик. Найчастіше у виробництві радіоелектронної продукції використовують системи паяння різноманітних виробників, де контроль температури може вимовлятись в той чи інший спосіб. І, на жаль, це не означає, що один і той же термопрофіль, який задається, буде однаково оброблений системами паяння, що, у свою чергу, відображується на якості паяння продукції, яка випускається [1].

Термопрофілювання

Типова послідовність операцій в технології поверхневого монтажу включає у себе нанесення паяльної пасті на контактні площадки, установку компонентів, групове паяння методом оплавлення пасті в печі, відмивання плати і нанесення захисних покриттів.

Кожна з перерахованих операцій в тій чи іншій мірі впливає на якість готового виробу, проте, особлива увага приділяється деталям процесу паяння, а саме процесу нагріву.

Термопрофілювання, як один з етапів технологічного процесу монтажу електронних компонентів, являє собою процес формування температурного профілю – температурно-часової характеристики процесу паяння, зазначеної на кількісному вимірі складових, тобто температури і часу, та визначенні їх відповідності необхідним допускам [2].