Конструктивне вирішення проблем адаптації машин для земляних робіт до умов експлуатації, які змінюються

К.т.н. В.О. Шевченко 1, Н.П. Пенкіна 2

1. Харківський національний автомобільно-дорожній університет
2. Харківський державний автомобільно-дорожній коледж

Вступ
Машини для земляних робіт (МЗР) – одна з найбільш багаточислених груп будівельної техніки. Вони призначені для обробки та переробки робочого середовища, що представляє собою грунт та будівельні матеріали. Одним з сучасних напрямків розвитку МЗР є модернізація їх робочого обладнання з метою розширення номенклатури технологічних операцій, які виконуються та, як слідство, підвищення показників ефективності. В літературних джерелах наводиться велика кількість різноманітних методів, які дозволяють вирішити поставлену задачу. Однак, разом з цим, відсутні достатньо глибоко розроблені системні підходи проектування таких універсальних машин.

Аналіз останніх досліджень і публікацій
Аналіз публікацій показує, що в галузі виробництва будівельної техніки найбільша увага приділяється багатофункціональним машинам, які обладнані змінними або універсальними робочими органами [1, 2, 3].

В якості домінуючого критерію, який дозволяє визначити параметри робочого обладнання та особливості та особливості його застосування під час виконання технологічних операцій, використовують продуктивність [1, 4, 5, 6, 7]. У них випадках, коли на робочому обладнанні встановлюються додаткові енергоспоживаючі системи та елементи, наприклад, шнеки, системи газового змащування і таке інше, при визначенні геометричних та кинематичних параметрів складного комбінованого робочого обладнання окрім критерію продуктивності враховується критерій енергомісткості робочого процесу.

Наряду з науковими розробками існує велика кількість публікацій, авторами яких є виробники унікального робочого обладнання.

Як правило, в таких публікаціях відсутні теоретичне обґрунтування оцінювання геометричних та інших параметрів, вони містять тільки опис конструкції машини та інформацію рекламного характеру.

Актуальність
Використання багатоцільового робочого обладнання дозволяє адаптувати МЗР до виконання більшої кількості різноманітних технологічних операцій. Однак сучасні способи конструювання таких пристроїв вступають у конфлікт з методиками проєктування самих МЗР. Зокрема, в усіх методиках металоконструкції та привод робочого обладнання проєктуються з урахуванням типової, характерної для даної машини, технологічної операції, яка виконується в типовому (найбільш розповсюдженному) робочому середовищі. Встановлення на такій вузькоспеціалізованій машині нестандартного, нетипового робочого обладнання може привести до зміни режиму навантаження всієї машини. Як наслідок цього – зниження таких показників ефективності як якість, собівартість продукції, продуктивність і таке інше. У зв'язку з вищевказаним, на сьогоднішній день однією з актуальних проблем є систематизація інформації про вдосконалення робочого обладнання МЗР і розробка основ нових методів проєктування машин, які враховують змінний характер режимів їх навантаження в процесі експлуатації з різноманітним робочим обладнанням.

Мета роботи
Мета роботи – розробити класифікацію конструктивних методів адаптації МЗР до виконання різноманітних технологічних операцій.

Умови експлуатації МЗР та структурна схема адаптації до них робочого обладнання
Досвід експлуатації МЗР дозволяє стверджувати, що машини працюють в оточенні різноманітних об’єктивних та суб’єктивних факторів, які впливають на основні показники їх ефективності рис. 1, [8].
Технологія приборостроення 2’ 2019

Рис. 1. Структурна схема системи «оператор – машина – робоче середовище – оточуюче середовище»

До таких факторів слід віднести:
- вплив з боку оточуючого середовища, яке частіше за все розглядають як кінематичне. Це такі основні фактори: температура, вологість, освітлення, заплізність та інше;
- змінні параметри робочого середовища, яке обробляється. До них слід віднести не тільки осереднені фізико-механічні характеристики грунту і будівельних матеріалів, але й наявність в них великих кам’яністості включень, анізотропний характер середовища, залежність багатьох показників від параметрів оточуючого середовища;
- суб’єктивний вплив на роботу машини з боку оператора, який залежить від особливостей та способів керування машиною;
- організаційні фактори, які визначають технологію виконання робочих операцій та вимоги до показників ефективності роботи МЗР. До останніх, в першу чергу, слід віднести економічні показники, продуктивність, енергомісткість процесу, показники якості (надійності), вимоги до якості виконання робіт та інше.

Такий складний комплекс зовнішніх впливів на МЗР і вимог, які висуваються до показників ефективності суггіє ускладнює задачу проектування машини. Усі сучасні методи передбачають проектування зеленьорізної машини для виконання типової, найбільш розповсюдженої, технологічної операції для обробки типового робочого середовища з осередненими показниками. При цьому необхідно враховувати, що показники ефективності МЗР при виконанні нетипових технологічних операцій зберігаються.

Значна априорна невизначеність умов функціонування МЗР в процесі змінювання виду робочих технологічних операцій передбачає, для збереження високих показників ефективності, відповідну адаптацію (пристосування) машини, зокрема, її робочого обладнання.

Структурна схема процесу адаптації робочого обладнання та всієї машини до зовнішніх змінних впливів передбачає виконання наступних кроків, рис. 2, [9]:

- обґрунтування та вибір критеріїв адаптації. Вони, частіше за все, співпадають з показниками ефективності МЗР;
- виконання операції адаптації робочого обладнання, яка забезпечить необхідні значення критеріїв.

Стосовно робочого обладнання доцільно реалізувати один з двох видів адаптації: параметричну або структурну [9].

Рис. 2 Алогритм адаптації робочого обладнання МЗР

В процесі параметричної адаптації, частіше за все, змінюються геометричні параметри робочого обладнання: кут різання, кут захоплення, кут перекосу у вертикальній площині і таке інше. Це найнижчий рівень адаптивних впливів, який виконується за допомогою системи керування робочим обладнанням. Структурна адаптація передбачає зміну самої конструкції робочого обладнання.

Оскільки поява нових типів робочого обладнання МЗР продиктована перш за все адаптацією до розширеної номенклатури технологічних операцій, які виконуються та забезпеченням заданих рівнів критеріїв адаптації, систематизацію даних о конструктивних підходах до проектування робочого обладнання доцільно виконувати з урахуванням алгоритму, який представлено на рис. 2.

Класифікація конструктивних підходів до створення нових типів робочого обладнання МЗР

Аналіз науково-технічної інформації дозволив виділити окремі напрями конструктивного вдосконалення робочого обладнання МЗР.

До одного з напрямків відносяться робочі органи, які мають можливість самостійно змінювати свої геометричні параметри під впливом зовнішніх умов. Прикладом такої конструкції є екскараторний ківш з іншою, яка змінюється самостійно рис 3, [6]. Конструктивною особливістю ківша є формування ріжучої кромки з нерухомих і рухомих частин, які забезпечують гнучкість форми ріжучої кромки. Другий конструктивний варіант ківша має рухомі бокові стінки, які можуть змінювати своє положення в залежності від показників міцності робочого середовища, яке розробляється.
У практиці проектування робочого обладнання 
МЗР широко застосовується підхід, коли безпосередньо
на ньому передбачено використання системи керування,
яка дозволяє змінювати його положення у просторі та
геометричні характеристики в залежності від типу
технологічної операції, яка виконується, та виду робочого
середовища. Частіше за все такі системи гідравлічні, а
керування ними здійснює або оператор, або слідкуюча
автоматична система.

На робочих органах, які обладнані пристроями
інтенсифікації, встановлюються додаткові системи
керування, які змінюють кінематичні параметри
обладнання [2,3].

В реальних умовах експлуатації робоче
обладнання МЗР нерідко сприймає ударний динамічний
вплив з боку робочого середовища. Навантаження
відповідного типу різко знижують показники якості
(надійності) як окремих вузлів, так і всієї машини в
цілому. Для адаптації машини до такого виду
навантаження в робочому обладнанні встановлюються
різноманітні амортизуючі, протизадарні та захисні
системи [4].

В якості конструктивних підходів структурної
адаптації слід виділити наступне:
- використання на МЗР комплектів
швидкозмінних робочих органів. Частіше за все такі
комплекти використовуються на однокішеневих
фронточних навантажувачах та екскаваторах, рис 4.
Основною особливістю МЗР у цьому випадку
є встановлення на них спеціальних перехідних пристроїв
кріплення, які дозволяють швидко виконувати зміну
робочих органів [6];

- встановлення на одній машині комплектів з
декількох незалежних робочих органів. Типовими
прикладами можуть служити автогрейдер та
однокішеневі екскаватори на базі сімейства тракторів МТЗ
(рис 5);

автогрейдер: 1 – киркувальник; 2 – основний відвал;
3 – бульдозерний відвал

екскаватор на базі трактора: 1 – навантажувальний ківш;
2 – екскаваторне обладнання

Рис. 5. Встановлення на одній машині комплекту з декількох
незалежних робочих органів

- встановлення на МЗР комбінованих
багатофункціональних та індустріальних робочих органів,
які дозволяють виконувати різноманітні технологічні
операції. Як приклад, можна навести щелепний ківш
фронтального навантажувача, рис. 6, [6], багатоцепьове
обладнання екскаватора, рис. 7, [6].

капання

навантаження

бульдозерне капання,
планування

грейферне завантаження

розподіл, засипка

грейферний захоплювач

Рис. 6. Двох щелепний ківш фронтального
навантажувача [6]
Рис. 7. Багатофункційне обладнання ескаватора [6]

Представлена інформація дозволяє виконати класифікацію конструктивних методів адаптації робочого обладнання МЗР до зовнішніх впливів, які змінюються, рис.8.

Рис. 8 Класифікації конструктивних методів адаптації робочого обладнання МЗР до зовнішніх впливів, які змінюються

Висновки
1. Конструктивне вдосконалення, яке використовується при створенні сучасного робочого обладнання МЗР, призначене для адаптації до змінних умов зовнішнього впливу та забезпечення виконання розширеної номенклатури технологічних операцій.
2. Переважно виконуються параметрична та структурна адаптації робочого обладнання МЗР.

3. Виконана класифікація конструктивних методів адаптації робочого обладнання МЗР до змінних зовнішніх впливів дозволяє перейти до розробки більш сучасних методів проектування МЗР.

СПИСОК ЛІТЕРАТУРИ:
5. Баловнев В.И. Определение оптимальных параметров и выбор землеройных машин в зависимости от условий эксплуатации. – М.: МАДИ (ГТУ), 2010. – 134с.