Технология приборостроения

\[F_3(x) = \sum_{j=1}^{m} \alpha_j \psi_j (b_j x_j) \rightarrow \min, \quad (7) \]

Задача визначения обраного набору обладання мінімальної вартості при заданому ступені якості вирішення задачі \(r \) (якість вирішення всіх задач \(R \)), тобто рівня безпеки \(b \) на вимогу \(i \), (рівня безпеки об’єкта в цілому). Ця задача вирішується як задача цілочисленного програмування вигляду:

\[F_1(x) = \sum_{j=1}^{m} (C_j x_j) \rightarrow \min \quad (8) \]

за умов:

\[\sum_{j=1}^{m} (C_j x_j) \leq c_{\text{max}} \quad (9) \]

\[\sum_{j=1}^{m} (a_j x_j) \geq 1, i \in M \quad (10) \]

\[x \in \{0,1\} \quad (11) \]

Висновки

Таким чином, проведений аналіз моделей та методів побудови автоматизованих систем охоронної сигналізації дозволяє зробити висновок, що забезпечення необхідного рівня надійності охорони об’єкта досягається кількістю рубежів охорони, а зведення до мінімуму сумарних витрат на обладнання об’єкта досягається варіюванням типів сповіщувачів та ПКП в кожному рубежі охорони.

СПИСОК ЛІТЕРАТУРИ:

МАТЕМАТИЧНА МОДЕЛЬ ВИЗНАЧЕННЯ СПОВІЩУВАЧІВ ПРОТИПОЖЕЖНОЇ СИГНАЛІЗАЦІЇ

Кт.н. Д.О. Маркозов, Д.Ю. Калаишников, Харківський національний автомобільно-дорожній університет

У роботі проаналізовані основні типи протипожежної сигналізації та її основні пристрої. Побудовано структурну модель автоматизованої протипожежної сигналізації. Розроблено математичну модель визначення елементів протипожежної сигналізації для підвищення ефективності прийняття управлінського рішення.

В роботе проанализированы основные типы противопожарной сигнализации и ее основные устройства. Построена структурная модель автоматизированной противопожарной сигнализации. Разработана математическая модель определения элементов противопожарной сигнализации для повышения эффективности принятия управленческих решений.

In the work analyzed basic types of fire alarm and its main unit. We construct a structural model of automated fire alarm. The mathematical model was developed to determine the elements of fire alarm systems to improve efficiency management decision.

Ключові слова: математична модель, багатокритеріальна оцінка, автоматизовані системи управління, протипожежна сигналізація.

Постановки проблеми і аналіз літератури

На сьогоднішній день існує велика конкуренція між компаніями, що встановлюють протипожежну сигналізацію. Найбільш конкурентоздатними є компанії, які пропонують замовники системи, що володіють необхідними показниками і відповідають усім заданим параметрам та вимогам.

Сучасна протипожежна сигналізація є невід’ємною частиною комплексу технічних засобів охорони, що повинні бути присутніми на будь-якому державному або приватному об’єкті. Установки та системи протипожежної безпеки, оповіщення та управління евакуацією людей при пожежі повинні забезпечувати автоматичне виявлення пожежі за час, необхідний для включення систем оповіщення про пожежу у цілях організації безпечної евакуації людей в умовах конкретного об’єкта.

Протипожежна сигналізація призначена для виявлення пожеж, обробки, передачі в заданому вигляді повідомлення про пожежу, спеціальної інформації та видачі команд на включення автоматичних установок пожежегасіння і включення виконавчих установок системи противопожарного захисту, технологічного та інженерного обладнання, а також інших пристроїв протипожежного захисту.
Визначення необхідних і ефективних елементів протипожежної сигналізації було і залишається досить актуальною задачею як для приватних, так і для державних організацій. У зв’язку з цим, аналізу різних аспектів даного питання присвячено дослідження багатьох вчених [1 - 5]. У той же час, огляд наукових публікацій свідчить, що існуючі математичні моделі та методи визначення сповіщувачів протипожежної сигналізації не завжди дозволяють прийняти ефективне управлінське рішення в умовах різного ступеня невизначеності початкової інформації.

Виходячи із вище сказаного, актуальність даного дослідження обумовлена тим, щоб без розробки математичної моделі визначення сповіщувачів протипожежної сигналізації, неможлива ефективна робота охоронних підрозділів.

Мета та постановка задачі
Метою дослідження є підвищення ефективності роботи протипожежної сигналізації за рахунок розробки математичної моделі визначення сповіщувачів протипожежної безпеки.

Для досягнення даної мети необхідно вирішити наступні задачі: проаналізувати сутність проблеми встановлення систем протипожежної сигналізації; розглянути існуючі моделі вирішення даної проблеми; розробити математичну модель визначення сповіщувачів протипожежної сигналізації в умовах різного ступеня невизначеності початкової інформації.

Математична модель визначення сповіщувачів протипожежної сигналізації
Основними принципами побудови системи протипожежної сигналізації на об’єкті є її відповідність нормативній документації, що регламентується будівельними нормами і правилами, а також державними стандартами та нормативними актами МНС.

Основним параметром якості систем пожежної безпеки є її надійність. У даному випадку під цим мається на увазі в собі цілій ряд параметрів. Головним серед них є можливість виявлення пожежі на самій ранній стадії і мінімізація помилкових сплачувань системи.

Сучасні системи протипожежної сигналізації поділяються на 3 основних типи: порогові, адресні та адресно-аналогові. Адресно-аналогові системи протипожежної сигналізації є найнайшвидшим, але не завжди раціонально їх використовувати через їх великі вартість. В Україні найпоширенішими є адресні системи протипожежної сигналізації. Але ні в якому типі сигналізації не має чітких рекомендацій щодо підбору та розміщення пожежних сповіщувачів, окрім того, що вони мають підходити до цього типу сигналізації.

Основними пристроями систем протипожежної безпеки є: пожежний сповіщувач, пристрій приймопро- контрольний (ППК), звуковий оповідаль та газоаналізатор.

Проаналізуємо сучасний ринок протипожежних сповіщувачів (таблиця 1).

<table>
<thead>
<tr>
<th>Таблиця 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Назва сповіщувача</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>СПД-3.2</td>
</tr>
<tr>
<td>Артон ДЛ</td>
</tr>
<tr>
<td>СПД-3.0</td>
</tr>
<tr>
<td>Пульсар 1-010С</td>
</tr>
<tr>
<td>Спектрон-401</td>
</tr>
<tr>
<td>ТПТ -З</td>
</tr>
<tr>
<td>СПП-3Б</td>
</tr>
</tbody>
</table>
Технологія приборостроення

На рисунку 1 представлено розроблену структурну модель автоматизованої протипожежної сигналізації.

Рис. 1.Структурна модель автоматизованої протипожежної сигналізації

Для розробки математичної моделі введемо наступні позначення: $C(X_{kl},Y_{mn},Z_{ij})$ – витрати на елементи протипожежної сигналізації; C_{ij} – вартість ППК; C_{mn} – вартість сповішувача; C_{kl} – вартість оповіщувача; k – тип ППК; l – вид ППК; m – тип сповішувача; n – вид сповішувача; i – вид оповіщувача; j – вид оповіщувача; I_{mn} – інтенсивність відмов сповішувача; I_{kl} – інтенсивність відмов ППК; I_{ij} – інтенсивність відмов оповіщувача; $I(X_{kl},Y_{mn},Z_{ij})$ – показник інтенсивності відмов.

Математична модель складається з наступних критеріїв:
– мінімалізовані витрати на елементи протипожежної сигналізації (грн.):

$$C(X_{kl},Y_{mn},Z_{ij}) = \min \left[\sum_{i=1}^{k} \sum_{j=1}^{l} C_{ij} X_{ij} + \sum_{m=1}^{n} \sum_{i=1}^{k} C_{mn} Y_{mn} + \sum_{i=1}^{k} \sum_{j=1}^{l} C_{kl} Z_{kl} \right];$$

(1) – мінімальний показник інтенсивності відмов:

$$I(X_{kl},Y_{mn},Z_{ij}) = \min \left[\sum_{i=1}^{k} \sum_{j=1}^{l} I_{ij} X_{ij} + \sum_{m=1}^{n} \sum_{i=1}^{k} I_{mn} Y_{mn} + \sum_{i=1}^{k} \sum_{j=1}^{l} I_{kl} Z_{kl} \right];$$

(2)

Для наведеної вище математичної моделі існують наступні обмеження:
– витрати на ППК не повинні перевищувати задані C_{mn}:

$$\sum_{i=1}^{k} \sum_{j=1}^{l} C_{ij} X_{ij} \leq C_{mn};$$

(3) – витрати на сповішувачі не повинні перевищувати задані C_{kl}:

$$\sum_{m=1}^{n} \sum_{i=1}^{k} C_{mn} Y_{mn} \leq C_{kl};$$

(4) – витрати на оповіщувачі не повинні перевищувати задані C_{ij}:

$$\sum_{i=1}^{k} \sum_{j=1}^{l} C_{ij} Z_{ij} \leq C_{ij}.$$

(5) – показник інтенсивності відмов ППК не повинен перевищувати заданий I_{kl}:

$$\sum_{i=1}^{k} \sum_{j=1}^{l} I_{ij} X_{ij} \leq I_{kl};$$

(6) – показник інтенсивності відмов сповішувачів не повинен перевищувати заданий I_{mn}:

$$\sum_{m=1}^{n} \sum_{i=1}^{k} I_{mn} Y_{mn} \leq I_{mn};$$

(7) – показник інтенсивності відмов оповіщувачів не повинен перевищувати заданий I_{ij}:

$$\sum_{i=1}^{k} \sum_{j=1}^{l} I_{ij} Z_{ij} \leq I_{ij}.$$

(8) – позитивність та дискретність змінних:

$$X_{ij} = \{0;1\}, Y_{mn} = \{0;1\}, Z_{ij} = \{0;1\}.$$

(9)

Розробленна математична модель (1) – (9) відноситься до задач багатокритеріального цілочисельного програмування.

Дана задача має наступні характеристики:
– кількість сповішувачів: димових – 17, ручних – 3;
– кількість оповіщувачів – 3;
– загальні витрати – 8408,4 грн.;
Рис. 3. Розроблена модель побудови протипожежної сигналізації

Ця модель володіє наступними показниками:

– кількість сповіщувачів: димові – 9; теплові – 6; ручні – 3;
– кількість оповіщувачів – 3;
– загальні витрати – 7288,3 грн.;
– показник простору, що охороняється – 96% від загального;

– показник щільності покриття простору, що охороняється – 1,4.

Перелік пристроїв, які входять до розробленої протипожежної сигналізації: ППК – Тирас-4П; димові сповіщувачі – СПД 3.0; теплові оповіщувачі – ТИП 3; світлові сповіщувачі – ОСЗ 1.0; модуль релейних ліній – МРЛ-2.1; модуль цифрового автодозову; ручні сповіщувачі – СПР; комунікатор телефонний – ТК GSM 2; дроти.

На основі оцінки результатів впровадження розробленої моделі, можна зробити висновок, що розроблена модель має кращі показники, ніж базова.

Висновки

Таким чином, у статті була розроблена математична модель визначення сповіщувачів протипожежної сигналізації. Як видно із розрахунків, показник щільності покриття простору, що охороняється покращено на 12%, а загальні витрати на 13,3%. Дана модель є універсальною, а отже, її можуть застосовувати як приватні, так і державні підприємства.

Перспективним напрямком подальшого розвитку цієї моделі є розробка інформаційного забезпечення та її реалізації.

СПИСОК ЛІТЕРАТУРИ:

УДК 681.5.015

МОДЕЛИРОВАНИЕ ДИНАМИКИ ОБЪЕМНОГО ГИДРОПРИВОДА

К.т.н. А.Г. Гурко, Харьковский национальный автомобильно-дорожный университет

Построена динамическая модель гидроприходов, состоящая из золотникового гидродвигателя с электромагнитным управлением и одноштокового гидроцилндра. Адекватность модели подтверждена результатами компьютерного моделирования.

Побудована динамічна модель гідроприводу, що складається з золотникового гідродвигателя з електромагнітним керуванням і одноштокового гідроцилндра. Адекватність моделі підтверджена результатами комп'ютерного моделювання.

A dynamic model of a hydraulic drive system, which consist of solenoid actuated spool valve and cylinder with a single piston has been built. The adequacy of the model has been confirmed with simulation results.

Ключевые слова: золотниковый распределитель, гидроцилиндр, моделирование, Simulink

Введение

Для приведения в движение различных машин и механизмов широко используется объемный гидравлический привод, для которого характерны высокая удельная мощность, относительная простота реализации и управления, простота обеспечения поступательного движения и прочие достоинства [1-2]. В то же время, подавляющее большинство гидроприводов, используемых в авиации, строительных и дорожных машинах, управляются вручную и не автоматизированы. Это, в первую очередь, связано с крайне нелинейной динамикой гидравлического привода, что затрудняет исследование протекающих в машинах процессов и управление этими процессами. Поскольку построение математических моделей гидравлического...